arthurai.core.attributes.ArthurAttribute#
- class arthurai.core.attributes.ArthurAttribute(name, value_type, stage, id=None, label=None, position=None, categorical=False, min_range=None, max_range=None, monitor_for_bias=False, categories=None, bins=None, is_unique=False, is_positive_predicted_attribute=False, attribute_link=None, gt_class_link=None, token_attribute_link=None, implicit=False)#
Bases:
arthurai.core.base.ArthurBaseJsonDataclass
ArthurAttribute encapsulates data associated with a model attribute
- Parameters
attribute_link (
Optional
[str
]) – Only applicable for GroundTruth or PredictedValue staged attributes. If stage is equal to GroundTruth, this represents the associated PredictedValue attribute and vice versais_positive_predicted_attribute (
bool
) – Only applicable for PredictedValue attributes on a Binary Classification model. Should be set to True on the positive predicted value attribute.is_unique (
bool
) – Boolean value used to signal if the values of this attribute are unique. To set an attribute to be unique, usearthur_model.get(name=attribute_name).set(is_unique=True)
.bins (
Optional
[List
[AttributeBin
]]) – List of bin cut-offs used to discretize continuous attributes. Use None as an open ended value.[None, 18, 65, None]
represents the three following bins:value < 18, 18 < value < 65, value > 65
. To modify an attribute’s bins, usearthur_model.get_attribute(name=attribute_name).set(bins=[None, cutoff_1, ..., cutoff_n, None])
.monitor_for_bias (
bool
) – boolean value set to True if the attribute should be monitored for bias. To modify an attributes’s bias monitoring status, usearthurai.core.models.ArthurModel.set_attribute_as_sensitive()
.max_range (
Union
[int
,float
,None
]) – Max value for a continuous attribute. To modify an attribute’s range, usearthur_model.get(name=attribute_name).set(range=[min_value, max_value])
.min_range (
Union
[int
,float
,None
]) – Min value for a continuous attribute. To modify an attribute’s range, usearthur_model.get(name=attribute_name).set(range=[min_value, max_value])
.categorical (
Optional
[bool
]) – Boolean value set to True if the attribute has categorical values. To set an attribute to be categorical, usearthur_model.get_attribute(name=attribute_name).set(categorical=true)
.position (
Optional
[int
]) – The array position of attribute within the stage. Required in the PREDICT_FUNCTION_INPUT stage.label (
Optional
[str
]) – Label for attribute. If attribute has an encoded name, a more readable label can be set.stage (
Stage
) –arthurai.common.constants.Stage
of this attribute in the model pipeline. To modify an attribute’s stage, usearthur_model.get(name=attribute_name).set(stage=stage_value)
. Seearthurai.common.constants.Stage
for the different stage values an attribute can have.value_type (
ValueType
) –arthurai.common.constants.ValueType
associated with this attributes values. Non-modifiable.name (
str
) – Name of the attribute. Attribute names can only contain alpha-numeric characters and underscores and cannot start with a number. To modify an attribute’s name, usearthurai.core.models.ArthurModel.rename_attribute()
.categories (
Optional
[List
[AttributeCategory
]]) – [Only for Categorical Attributes] If the attribute is categorical, this will contain the attribute’s categorical values and the labels for each value. It is required only if the categorical flag is set to true. To modify the category values, usearthur_model.get(name=attribute_name).set([{'value': value_1}, ..., {'value': value_n}])
. To mofidy the category labels, usearthurai.core.models.ArthurModel.set_attribute_labels()
.gt_class_link (
Optional
[str
]) – Optional link for a predicted attribute to its corresponding value in a ground truth class attributeimplicit (
bool
) – is the attribute implicitly created by the API
Methods
Helper function to filter out None objects from a json or dictionary representation of an object
from_dict
- rtype
TypeVar
(A
, bound=DataClassJsonMixin
)
from_json
- rtype
TypeVar
(A
, bound=DataClassJsonMixin
)
schema
- rtype
SchemaF
[TypeVar
(A
)]
Set one or many of the available properties of the ArthurAttribute class
short_name
Creates a dictionary representation of this object
Creates a json representation of this object
Attributes
attribute_link
bins
categorical
categories
dataclass_json_config
gt_class_link
id
implicit
is_positive_predicted_attribute
is_unique
label
max_range
min_range
monitor_for_bias
position
token_attribute_link
name
value_type
stage
- static clean_nones(d)#
Helper function to filter out None objects from a json or dictionary representation of an object
- Parameters
d – a Dictionary or Json representation of an ArthurBaseJsonDataclass object
- Returns
Dictionary of the object with all None components removed
- set(**kwargs)#
Set one or many of the available properties of the ArthurAttribute class
- to_dict(skip_none=True)#
Creates a dictionary representation of this object
This function can be applied to any extension of the ArthurBaseJsonDataClass
- Return type
dict
- Returns
Dictionary of object data
- to_json(skip_none=True)#
Creates a json representation of this object
This function can be applied to any extension of the ArthurBaseJsonDataClass
- Return type
str
- Returns
json of object data