arthurai.datasets.arthur_example.ArthurExample#
- class arthurai.datasets.arthur_example.ArthurExample(name, download_destination_folder=None)#
Bases:
object
Class for a user to interface with example data for model analysis and using Arthur
Methods
Returns a dataframe of the model's inputs, predictions, ground truth labels, and non input data
Returns the model's ground truth labels from self.dataset
Returns the model's input attribute feature values from self.dataset
Returns the model's non input attributes from self.dataset
Returns the model's predicted values from self.predictions
Attributes
The list of attribute names which make up the model's ground truth attributes Either GroundTruth or GroundTruthClass
The list of feature names which make up the model's input attributes
The list of feature names which make up the model's non-input attributes
The list of feature names which make up the model's predicted attributes
- get_dataset(split=False, test_split_size=None)#
Returns a dataframe of the model’s inputs, predictions, ground truth labels, and non input data
- Parameters
split (
bool
) – bool, whether to return the data split into train/test.test_split_size (
Optional
[float
]) – the percentage of data to be split into the test set if splitting the data. If None, uses the default test split defined in the example schema.
- Return type
Union
[DataFrame
,Tuple
[DataFrame
,DataFrame
]]- Returns
dataframe of inputs, predictions, ground truth labels, and non input data
- get_ground_truth_data(split=False, test_split_size=None, random_state=None)#
Returns the model’s ground truth labels from self.dataset
- Parameters
split (
bool
) – bool, whether to return the data split by reference/inference (AKA train/test), or whether to return a single dataframetest_split_size (
Optional
[float
]) – the percentage of data to be split into the test set if splitting the datarandom_state (
Optional
[int
]) – int, random state for optional split
- Return type
Union
[DataFrame
,Series
,Tuple
[DataFrame
,DataFrame
],Tuple
[Series
,Series
]]- Returns
dataframe of model ground truth values
- get_inputs(split=False, test_split_size=None, random_state=None)#
Returns the model’s input attribute feature values from self.dataset
- Parameters
split (
bool
) – bool, whether to return the data split by reference/inference (AKA train/test), or whether to return a single dataframetest_split_size (
Optional
[float
]) – the percentage of data to be split into the test set if splitting the datarandom_state (
Optional
[int
]) – int, random state for optional split
- Return type
Union
[DataFrame
,Series
,Tuple
[DataFrame
,DataFrame
],Tuple
[Series
,Series
]]- Returns
dataframe of model input features
- get_non_input_data(split=False, test_split_size=None, random_state=None)#
Returns the model’s non input attributes from self.dataset
- Parameters
split (
bool
) – bool, whether to return the data split by reference/inference (AKA train/test), or whether to return a single dataframetest_split_size (
Optional
[float
]) – the percentage of data to be split into the test set if splitting the datarandom_state (
Optional
[int
]) – int, random state for optional split
- Return type
Union
[DataFrame
,Series
,Tuple
[DataFrame
,DataFrame
],Tuple
[Series
,Series
]]- Returns
dataframe of model non-input attribute data
- get_predictions(split=False, test_split_size=None, random_state=None)#
Returns the model’s predicted values from self.predictions
- Parameters
split (
bool
) – bool, whether to return the data split by reference/inference (AKA train/test), or whether to return a single dataframetest_split_size (
Optional
[float
]) – the percentage of data to be split into the test set if splitting the datarandom_state (
Optional
[int
]) – int, random state for optional split
- Return type
Union
[DataFrame
,Series
,Tuple
[DataFrame
,DataFrame
],Tuple
[Series
,Series
]]- Returns
dataframe of model prediction data
- property gt_attribute_names: List[str]#
The list of attribute names which make up the model’s ground truth attributes Either GroundTruth or GroundTruthClass
- Return type
List
[str
]- Returns
list of ground truth attribute names
- property input_attribute_names: List[str]#
The list of feature names which make up the model’s input attributes
- Return type
List
[str
]- Returns
list of input attribute names
- property non_input_attribute_names: List[str]#
The list of feature names which make up the model’s non-input attributes
- Return type
List
[str
]- Returns
list of non-input attribute names
- property pred_attribute_names: List[str]#
The list of feature names which make up the model’s predicted attributes
- Return type
List
[str
]- Returns
list of predicted attribute names